organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(E)-3-(3-Chlorophenyl)-N-(4-hydroxy-3-methoxybenzyl)acrylamide

Liang-You Xia,^a Wen-Long Wang,^b Yan-Lan Huang^b and Shang Shan^{b*}

^aDepartment of Chemistry, Zunyi Normal College, People's Republic of China, and ^bCollege of Chemical Engineering and Materials Science, Zhejiang University of Technology, People's Republic of China Correspondence e-mail: shanshang@mail.hz.zj.cn

Received 11 June 2010; accepted 13 June 2010

Key indicators: single-crystal X-ray study; T = 294 K; mean σ (C–C) = 0.003 Å; R factor = 0.036; wR factor = 0.083; data-to-parameter ratio = 14.2.

In the title compound, $C_{17}H_{16}CINO_3$, the 4-hydroxy-3-methoxybenzyl group is planar [maximum atomic deviation = 0.0138 (16) Å] and is nearly perpendicular to the chlorobenzene ring, making a dihedral angle of 84.67 (4)°. The chlorobenzene and amide groups are located on the opposite sides of the C=C bond, showing an *E* configuration. The relatively long C=O bond distance of 1.2364 (19) Å and the short C-N bond distance of 1.341 (2) Å suggest electron delocalization in the amide fragment. Intermolecular O- $H \cdots O$, N- $H \cdots O$ and weak C- $H \cdots O$ hydrogen bonding is present in the crystal structure.

Related literature

The title compound is a derivative of capsaicin. For the biological activity of capsaicin, see: Kaga *et al.* (1989). For a related structure, see: Huang *et al.* (2010). For electron delocalization in amide groups, see: Xia *et al.* (2009).

Experimental

Crystal data C₁₇H₁₆ClNO₃

 $M_r = 317.76$

Monoclinic, $P2_1/c$ a = 9.036 (3) Å b = 14.972 (5) Å c = 11.768 (4) Å $\beta = 95.047$ (5)° V = 1585.9 (9) Å ³	Z = 4 Mo K\alpha radiation $\mu = 0.25 \text{ mm}^{-1}$ $T = 294 \text{ K}$ $0.40 \times 0.38 \times 0.36 \text{ mm}$
Data collection	
Rigaku R-AXIS RAPID IP diffractometer 7733 measured reflections	2848 independent reflections 1680 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.034$
Refinement $R[F^2 > 2\sigma(F^2)] = 0.036$ $wR(F^2) = 0.083$ S = 0.87 2848 reflections	201 parameters H-atom parameters constrained $\Delta \rho_{\text{max}} = 0.18 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.18 \text{ e } \text{\AA}^{-3}$

Table 1			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1-H1N\cdotsO3^{i}$ $O3-H3A\cdotsO1^{ii}$ $C2-H2\cdotsO1^{iii}$	0.86 0.82 0.93	2.12 1.84 2.41	2.960 (2) 2.6491 (18) 3.298 (2)	165 172 161
Symmetry codes: (i) -r + 1 - v - z + 1	-x + 1, -y -	+1, -z + 1; (ii) $-x + 1, y + \frac{1}{2}, -$	$-z + \frac{3}{2};$ (iii)

Data collection: *PROCESS-AUTO* (Rigaku, 1998); cell refinement: *PROCESS-AUTO*; data reduction: *CrystalStructure* (Rigaku/ MSC, 2002); program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1993); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

The work was supported by the Natural Science Foundation of Zhejiang Province, China (No. M203027).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2783).

References

- Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Huang, Y.-L., Wang, W.-L. & Shan, S. (2010). Acta Cryst. E66, 0877.
- Kaga, H., Miura, M. & Orito, K. A. (1989). J. Org. Chem. 54, 3477-3478.
- Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Xia, L.-Y., Wang, W.-L., Wang, S.-H., Huang, Y.-L. & Shan, S. (2009). Acta Cryst. E65, 01899.

supplementary materials

Acta Cryst. (2010). E66, o1700 [doi:10.1107/S1600536810022713]

(E)-3-(3-Chlorophenyl)-N-(4-hydroxy-3-methoxybenzyl)acrylamide

L.-Y. Xia, W.-L. Wang, Y.-L. Huang and S. Shan

Comment

The title compound is a derivative of capsaicin, which has been shown a variety of biological activities including mutagenicity (Kaga *et al.* 1989). We prepared the compound recently in the laboratory and determined its crystal structure.

The molecular structure of the title compound is shown in Fig. 1. The chlorobenzene and amide groups are located on the opposite sides of the C7= C8 bond, showing the E molecular configuration. The hydroxymethoxybenzyl moiety is planar [the maximum atomic deviation being 0.0138 (16) Å for O2 atom], and is nearly perpendicular to the chlorobenzene ring with a dihedral angle of 84.67 (4)°. The dihedral angle between the amide fragment and hydroxymethoxybenzyl)-3- chloro-2,2-dimethylpropanamide (Huang *et al.* 2010). The longer C9=O1 bond distance of 1.2364 (19) Å and the shorter C9-N1 bond distance of 1.341 (2) Å suggest the electron delocalization in the amide fragment, which is comparable to that found in the related compound *N*-(4-Hydroxy-3-methoxybenzyl)benzamide (Xia *et al.* 2009).

Intermolecular O—H···O, N—H···O and weak C—H···O hydrogen bonding are present in the crystal structure (Table 1), which helps to stabilize the crystal structure.

Experimental

4-Hydroxy-3-methoxy benzylamine HCl salt (4.7 g, 25 mmol) and dimethylformamide (25 ml) were added to a 100 ml 3-necked flask equipped with an additional funnel, a thermometer and a magnetic stirrer. Water solution (10 ml) of NaOH (2.0 g) was added at room temperature. The mixture was stirred at 308 K for 30 min and then cooled to 273 K. An ether solution (10 ml) of 3-(3-chlorophenyl)acryloyl chloride (5.0 g, 25 mmol) was added dropwise at about 273 K over 20 min. After stirred for 2 h at room temperature the mixture was poured into water, and then extracted with ethyl acetate. The ethyl acetate extract was washed with 1 *M* HCl followed by saturated NaHCO₃ and brine. The extract was then dried over anhydrous Na₂SO₄ and filtered. Solvents were removed under vacuum at about 308 K to give a solid crude. Recrystallization was performed twice with an absolute ethyl acetate to obtain single crystals of the title compound.

Refinement

H atoms were placed in calculated positions with O—H = 0.82, N—H = 0.86 Å, C—H = 0.93–0.97 Å, and refined in riding mode with $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl, $1.5U_{eq}(O)$ for hydroxy and $1.2U_{eq}(C,N)$ for the others.

Figures

Fig. 1. The molecular structure of the title compound with 30% probability displacement (arbitrary spheres for H atoms).

(E)-3-(3-Chlorophenyl)-N-(4-hydroxy-3-methoxybenzyl)acrylamide

Crystal data	
C ₁₇ H ₁₆ ClNO ₃	F(000) = 664
$M_r = 317.76$	$D_{\rm x} = 1.331 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 2246 reflections
a = 9.036 (3) Å	$\theta = 2.6 - 24.8^{\circ}$
b = 14.972 (5) Å	$\mu = 0.25 \text{ mm}^{-1}$
c = 11.768 (4) Å	T = 294 K
$\beta = 95.047 \ (5)^{\circ}$	Prism, colorless
$V = 1585.9 (9) \text{ Å}^3$	$0.40\times0.38\times0.36\ mm$
Z = 4	

Data collection

Rigaku R-AXIS RAPID IP diffractometer	1680 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.034$
graphite	$\theta_{\text{max}} = 25.2^{\circ}, \ \theta_{\text{min}} = 3.2^{\circ}$
Detector resolution: 10.0 pixels mm ⁻¹	$h = -10 \rightarrow 10$
ω scans	$k = -14 \rightarrow 17$
7733 measured reflections	$l = -14 \rightarrow 12$
2848 independent reflections	

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.036$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.083$	H-atom parameters constrained
<i>S</i> = 0.87	$w = 1/[\sigma^2(F_0^2) + (0.0403P)^2]$ where $P = (F_0^2 + 2F_c^2)/3$
2848 reflections	$(\Delta/\sigma)_{max} < 0.001$
201 parameters	$\Delta \rho_{max} = 0.18 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.18 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C11	1.00757 (8)	-0.14493 (4)	0.27966 (5)	0.0860 (2)
N1	0.40981 (17)	0.25930 (9)	0.46714 (12)	0.0486 (4)
H1N	0.4401	0.2856	0.4085	0.058*
01	0.43789 (14)	0.13850 (8)	0.58155 (9)	0.0512 (3)
O2	0.26985 (16)	0.62811 (8)	0.51708 (10)	0.0635 (4)
O3	0.44518 (16)	0.63463 (8)	0.70403 (9)	0.0565 (4)
H3A	0.4801	0.6304	0.7705	0.085*
C1	0.9795 (2)	-0.03509 (13)	0.32316 (15)	0.0521 (5)
C2	0.8564 (2)	-0.01564 (12)	0.37947 (14)	0.0466 (5)
H2	0.7909	-0.0607	0.3961	0.056*
C3	0.8309 (2)	0.07197 (12)	0.41124 (14)	0.0419 (4)
C4	0.9333 (2)	0.13733 (13)	0.38823 (14)	0.0514 (5)
H4	0.9179	0.1962	0.4097	0.062*
C5	1.0569 (2)	0.11562 (14)	0.33406 (16)	0.0600 (5)
Н5	1.1254	0.1598	0.3201	0.072*
C6	1.0807 (2)	0.02909 (15)	0.30013 (16)	0.0605 (6)
H6	1.1637	0.0146	0.2624	0.073*
C7	0.6954 (2)	0.09312 (12)	0.46534 (13)	0.0434 (5)
H7	0.6586	0.0499	0.5121	0.052*
C8	0.6219 (2)	0.16872 (12)	0.45275 (13)	0.0431 (5)
H8	0.6588	0.2131	0.4077	0.052*
С9	0.4838 (2)	0.18648 (12)	0.50668 (13)	0.0391 (4)
C11	0.2816 (2)	0.29694 (12)	0.51673 (16)	0.0534 (5)
H11A	0.2495	0.2566	0.5742	0.064*
H11B	0.2003	0.3041	0.4579	0.064*
C12	0.32141 (19)	0.38656 (11)	0.57021 (14)	0.0424 (4)
C13	0.2720 (2)	0.46507 (12)	0.51713 (14)	0.0451 (5)
H13	0.2101	0.4622	0.4498	0.054*
C14	0.3129 (2)	0.54727 (11)	0.56242 (14)	0.0427 (5)
C15	0.4062 (2)	0.55182 (11)	0.66299 (13)	0.0414 (4)
C16	0.4549 (2)	0.47407 (13)	0.71542 (14)	0.0498 (5)
H16	0.5172	0.4766	0.7826	0.060*
C17	0.4126 (2)	0.39228 (12)	0.66993 (15)	0.0522 (5)

supplementary materials

H17	0.4462	0.3403	0.707	0 0	.063*	
C18	0.1775 (3)	0.62875 (14	0.413	75 (17) 0	0.0868 (8)	
H18A	0.2262	0.5978	0.356	0 0	.130*	
H18B	0.1584	0.6893	0.390	1 0	.130*	
H18C	0.0853	0.5996	0.424	9 0	.130*	
Atomic disp	placement parameters	$s(A^2)$				
	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U ²³
Cl1	0.0954 (5)	0.0612 (4)	0.1017 (5)	0.0236 (3)	0.0111 (4)	-0.0185 (3)
N1	0.0612 (11)	0.0352 (9)	0.0511 (9)	0.0042 (8)	0.0150 (8)	0.0023 (7)
01	0.0566 (9)	0.0501 (8)	0.0473 (7)	-0.0021 (7)	0.0067 (6)	0.0142 (6)
02	0.0950 (11)	0.0383 (8)	0.0529 (8)	0.0033 (7)	-0.0171 (7)	0.0047 (6)
03	0.0828 (10)	0.0437 (8)	0.0415 (7)	-0.0120 (7)	-0.0033 (7)	-0.0015 (6)
C1	0.0558 (14)	0.0497 (12)	0.0502 (11)	0.0095 (11)	0.0011 (10)	-0.0019 (9)
C2	0.0452 (12)	0.0418 (11)	0.0520 (11)	-0.0003 (9)	-0.0005 (9)	0.0042 (9)
C3	0.0423 (12)	0.0406 (11)	0.0421 (10)	0.0008 (9)	0.0004 (8)	0.0013 (8)
C4	0.0567 (13)	0.0445 (11)	0.0535 (11)	-0.0041 (11)	0.0076 (10)	-0.0025 (9)
C5	0.0569 (14)	0.0612 (15)	0.0630 (12)	-0.0134 (12)	0.0107 (11)	0.0010 (11)
C6	0.0534 (14)	0.0742 (16)	0.0553 (12)	0.0056 (13)	0.0118 (10)	0.0004 (11)
C7	0.0480 (12)	0.0400 (11)	0.0418 (10)	-0.0041 (10)	0.0020 (8)	0.0026 (8)
C8	0.0542 (13)	0.0345 (11)	0.0412 (9)	-0.0027 (9)	0.0072 (9)	-0.0011 (8)
C9	0.0475 (12)	0.0324 (10)	0.0367 (9)	-0.0034 (9)	-0.0001 (8)	-0.0055 (8)
C11	0.0503 (13)	0.0409 (11)	0.0695 (12)	0.0010 (10)	0.0076 (10)	-0.0041 (10)
C12	0.0408 (11)	0.0360 (11)	0.0516 (11)	0.0038 (9)	0.0095 (9)	-0.0010 (9)
C13	0.0469 (12)	0.0439 (11)	0.0440 (10)	0.0016 (10)	0.0008 (8)	-0.0040 (9)
C14	0.0523 (12)	0.0347 (11)	0.0412 (10)	0.0035 (9)	0.0052 (9)	0.0033 (8)
C15	0.0488 (12)	0.0387 (11)	0.0373 (9)	-0.0045 (9)	0.0079 (8)	-0.0020 (8)
C16	0.0551 (13)	0.0499 (12)	0.0428 (10)	0.0025 (10)	-0.0043 (9)	0.0024 (9)
C17	0.0586 (14)	0.0424 (12)	0.0550 (11)	0.0130 (10)	0.0025 (10)	0.0075 (9)
C18	0.124 (2)	0.0588 (14)	0.0691 (14)	0.0223 (15)	-0.0405 (14)	0.0010 (11)

Geometric parameters (Å, °)

Cl1—C1	1.747 (2)	C7—C8	1.314 (2)
N1—C9	1.341 (2)	С7—Н7	0.9300
N1—C11	1.456 (2)	C8—C9	1.473 (3)
N1—H1N	0.8600	С8—Н8	0.9300
O1—C9	1.2364 (19)	C11—C12	1.512 (2)
O2—C14	1.366 (2)	C11—H11A	0.9700
O2—C18	1.413 (2)	C11—H11B	0.9700
O3—C15	1.366 (2)	C12—C17	1.376 (2)
O3—H3A	0.8200	C12—C13	1.386 (2)
C1—C6	1.370 (3)	C13—C14	1.379 (2)
C1—C2	1.375 (3)	С13—Н13	0.9300
C2—C3	1.389 (2)	C14—C15	1.393 (2)
С2—Н2	0.9300	C15—C16	1.372 (2)
C3—C4	1.389 (2)	C16—C17	1.377 (2)
С3—С7	1.464 (3)	С16—Н16	0.9300

C4—C5	1.373 (3)	C17—H17	0.9300
C4—H4	0.9300	C18—H18A	0.9600
C5—C6	1.378 (3)	C18—H18B	0.9600
С5—Н5	0.9300	C18—H18C	0.9600
С6—Н6	0.9300		
C9—N1—C11	124.46 (15)	N1—C9—C8	114.38 (16)
C9—N1—H1N	117.8	N1—C11—C12	110.01 (15)
C11—N1—H1N	117.8	N1—C11—H11A	109.7
C14—O2—C18	117.95 (14)	C12—C11—H11A	109.7
C15—O3—H3A	109.5	N1—C11—H11B	109.7
C6—C1—C2	121.96 (18)	C12—C11—H11B	109.7
C6—C1—Cl1	119.05 (17)	H11A—C11—H11B	108.2
C2—C1—Cl1	118.99 (16)	C17—C12—C13	118.45 (16)
C1—C2—C3	119.33 (18)	C17—C12—C11	120.86 (16)
C1—C2—H2	120.3	C13—C12—C11	120.64 (16)
C3—C2—H2	120.3	C14—C13—C12	121.19 (16)
C2—C3—C4	118.94 (17)	C14—C13—H13	119.4
C2—C3—C7	119.09 (17)	С12—С13—Н13	119.4
C4—C3—C7	121.95 (17)	O2—C14—C13	125.63 (15)
C5—C4—C3	120.44 (18)	O2—C14—C15	114.78 (15)
C5—C4—H4	119.8	C13—C14—C15	119.59 (15)
C3—C4—H4	119.8	O3—C15—C16	123.29 (15)
C4—C5—C6	120.7 (2)	O3—C15—C14	117.58 (15)
C4—C5—H5	119.6	C16—C15—C14	119.13 (16)
С6—С5—Н5	119.6	C15—C16—C17	120.86 (16)
C1—C6—C5	118.6 (2)	С15—С16—Н16	119.6
C1—C6—H6	120.7	С17—С16—Н16	119.6
С5—С6—Н6	120.7	C12—C17—C16	120.77 (16)
C8—C7—C3	124.84 (17)	С12—С17—Н17	119.6
С8—С7—Н7	117.6	С16—С17—Н17	119.6
С3—С7—Н7	117.6	O2-C18-H18A	109.5
С7—С8—С9	123.09 (17)	O2—C18—H18B	109.5
С7—С8—Н8	118.5	H18A—C18—H18B	109.5
С9—С8—Н8	118.5	O2—C18—H18C	109.5
01—C9—N1	122.10 (17)	H18A—C18—H18C	109.5
O1—C9—C8	123.52 (16)	H18B—C18—H18C	109.5

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	$D -\!\!\!-\!\!\!\!- \mathbf{H} \cdots \!$
N1—H1N···O3 ⁱ	0.86	2.12	2.960 (2)	165
O3—H3A···O1 ⁱⁱ	0.82	1.84	2.6491 (18)	172
C2—H2···O1 ⁱⁱⁱ	0.93	2.41	3.298 (2)	161

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+1; (ii) -*x*+1, *y*+1/2, -*z*+3/2; (iii) -*x*+1, -*y*, -*z*+1.

Fig. 1

